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Hello! We are Team 13, also known as Sparks and Stripes Forever, and we are here 
to make flying a little less miserable for our users.

Link to notebook: 
https://adb-731998097721284.4.azuredatabricks.net/?o=731998097721284#noteboo
k/632558266974488/command/1215577238246617



The Project

Create a machine learning model for predicting which flights will be 
delayed. For airline travelers, knowing what flights are delayed 
allows them to better schedule their time and reduce wasted time.

Delayed Flight = Flight Delay > 15 Minutes
OR Flight is Cancelled
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Nash 25 seconds

Delays are generally recognized as one of the worst parts of air travel. In 2007, 
travellers incurred nearly $17 billion dollars worth of expenses due to delayed flights. 
As such, our goal is to use machine learning models and newly engineered features 
to predict whether or not a domestic flight will be delayed by 15 minutes or more given 
information from 2 hours prior to the scheduled departure time. Our aim is improve 
the experience of air travellers, by reducing the amount of time they waste waiting for 
a delayed flight.



Executive Summary
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● Created a joined data set with over 40 million rows 
with 10 new, highly-predictive features.

○ Most influential features were previous flight 
delay, extreme weather, and departure hour 
indicators.

● Implemented a data pipeline to train, validate, and 
evaluate ML models.

Baseline 
Model

Logistic 
Regression

F0.5 = 0.20
(Primary Metric)

Best Model

Gradient 
Boosted Tree

F0.5 = 0.52
(Primary Metric)

166 % Improvement
in predictive power

over baseline

Nash 42

Building off of a simple model as a baseline, we were able to improve delay prediction 
performance by 166%, providing a powerful predictive tool that can help airline fliers 
avoid delays and wasting time. Throughout our analysis, we incorporated flight, 
weather, and weather station data, and developed several new, highly predictive 
features. We trained five different machine learning models using cross validation, 
and achieved best results from a Gradient Boosted Tree model, as measured by F0.5 
and precision metrics. The most important features for this top-performing model were 
indicators for whether the flight was previously delayed or not, the hour of the flight's 
scheduled departure time, and the flight's airline carrier.



Data Set and EDA

Airline Flights + Weather Stations + Weather Data
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Deanna - 12s

For this analysis, our story begins with three data sets, including US domestic airline 
flight data for 2015-2021, weather data collected from hundreds of weather stations, 
and geographical data on the weather stations.



Weather Data

STATION
DEP_DATETIME_LAG

Flights Data

AIRPORT
STATE

DEP_DATETIME_LAG

Stations Data

STATION
AIRPORT

STATE

Joined Data Set
Weather + Station + Flight Data 

~41M flights with weather data for the corresponding departure dates and times
10 minutes join time on 4 cores

Joining Data Sets
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To join the data sources together, we connected the weather stations with the flights 
by associating airports with any nearby weather stations. We then joined the flights 
data onto the weather data based on the time of weather observation and the time 
two hours prior to the flight departure, to avoid data leakage. In instances where 
airports had multiple weather stations, we averaged a sample of their weather 
measurements together, allowing us to maximize our data coverage to account for 
stations with missing data. Finally, we converted all times to UTC to better track flights 
that cross time zones. 



Spearman Correlation

Joined Data 
EDA

# of rows in joined 
data set

40,933,735

Best Airlines by 
Percentage of 

Flights Delayed
● Hawaiian
● Delta

Worst Airlines by 
Percentage of 

Flights Delayed
● SouthWest
● JetBlue
● Frontier

35 Million Non Delayed
6 Million Delayed
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Our joined data set was both sufficiently large and considerably clean, containing 41 
million flight records with 96% of them completely free of missing values across all 32 
selected features.

Of these flights, 35 Million were Not Delayed and 6 Million were Delayed, giving us 
about a 17% rate of delayed flights.

When examining each airline’s performance regarding flight delays relative to their 
total flights, we found that SouthWest had the highest percentage delayed

Hawaiian Airlines had the lowest by a significant margin but had considerably fewer 
total flights than its competitors.

Additionally, we used a spearman correlation between our features and our target 
variable, and we found that hourly precipitation had the strongest association. 



Engineered Features
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Flight Delay Tracker

States whether the flight 
was recently delayed

(is_prev_delayed)

Flight Diverted Tracker

States whether the flight 
was diverted

(is_prev_diverted)

Airline Efficacy Score

Reports how frequently 
airline delays flights

(perc_delay)

Special Day Tracker

Indicates special days and 
flight volume impacts
(AssumedEffect_Text)

Outgoing Flight Frequency

Charts Airport Volume 
using PageRank

(pagerank)

Extreme Weather Indicators

Indicates active severe 
weather conditions

(multiple features)

Nina (1 min 13 sec)

Next, we focused on feature engineering.

We first created 2 flight tracking features. Specifically we created: 
- A flight delay tracker, which is an indicator feature that states whether an 

aircraft was delayed. We assume that an aircraft which was delayed will likely 
have its subsequent flights delayed as well. This feature turned out to be 
highly predictive

- Similar to the flight delay tracker, we created an indicator that tracks whether 
an aircraft was diverted to a different airport. To our surprise, this feature 
actually caused our model performance to drop and so we left it out from our 
model

Next, we created 2 features that describe the physical environment, which includes:
- A series of indicator features that identify extreme weather conditions such as 

freezing rain and blowing snow
- We also tracked if the ‘scheduled flight date’ is likely to have abnormal air 

traffic volume due to holidays or shelter in place restrictions from the 
pandemic.

Finally, we created 2 features that describe the status quo of the airline industry:
- We created a measure of airline efficiency by calculating the percentage of 



- flights that were delayed by that airline
- We also abstracted how important an airport is by calculating the page rank 

from their outgoing flights.



PageRank By Outgoing Flights
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Top Airports by PageRank:

1. ATL - Atlanta International 

2. ORD - O'Hare International 

3. DFW - Dallas/Fort Worth 

International 

4. DEN - Denver International 

5. LAX - Los Angeles 

International 
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Calculating the pagerank by outgoing flight volume 
allowed us to see where airports ranked regarding 
their significance in outgoing flight volume and thus 
which are the busiest.

The airport with the highest score was ATL - Atlanta International 
Airport

ORD - O'Hare International Airport
DEN - Denver International Airport
DFW - Dallas/Fort Worth International Airport
LAX - Los Angeles International Airport



Data Pipeline

Data Ingesting and Machine Learning Modelling
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Ryan ~ 17seconds

Now that we’ve gone over the data, let’s talk about the data pipeline. This takes in the 
raw data, transforms it, and then uses it in machine learning.
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This is a diagram of our end-to-end data pipeline, which shows the steps involved in 
our project, including the data transformation tasks like string indexing, one-hot 
encoding, and vector assembling. We leveraged a number of tools and platforms such 
as Microsoft Azure, Apache Spark, and MLLib.



● Model Integrity

○ 2015 dropped to prevent data leakage

○ Cancelled Flights == Delayed Flights

○ Time Lag and Timezone Conversion

○ Blocking Time Series Cross Validation

Special Pipeline Considerations I
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Image Credit: 

https://medium.com/@soumyachess1496/cross-validation-in-time-series-566ae4981ce4

Ryan - 11seconds

There were some special considerations that we had to make in our pipeline, thereby 
ensuring that our process is conceptually sound and mathematically correct.

We dropped flights from 2015 to prevent data leakage. Don’t worry: it did not affect 
our metrics.

We treated cancelled flights as delayed flights.

We implemented a 2 hour time lag, and converted all the times to the same UTC time 
zone.

And we properly handled the time series data with a custom version of blocking time 
series cross validation,- pictured here.



● Model Performance Optimization

○ Feature Selection

■ Sped up model training by dropping 

unimportant categorical features.

○ Rebalance Data with Downsampling

■ Improved model training 

performance by ensuring more equal 

distributions

Special Pipeline Considerations II
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Furthermore, removing some unimportant, high dimensionality categorical features 
reduced training run-times from 24 hours to 1.5 hours without affecting our metrics.

And rebalancing our data with downsampling allowed our model to train better and 
make better predictions.



Models and Evaluation
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Ryan ~ 6 seconds

With the pipeline explained, we can now move on to talking about the models and our 
evaluations.



Evaluation Metrics

False Negative
You waste some time.

False Positive
You miss your flight.

Primary Metric: F0.5 Value
Secondary Metric: Precision
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When choosing evaluation metrics, remember our use case of informing users of 
flight delays: A false negative would mean you waste a little time. But a false positive 
would mean that you would miss your flight entirely. For this reason, we wanted to 
track a precision score to indicate how many worst-case scenarios we will have. But 
ultimately, we wanted our primary metric to balance prioritizing minimizing the false 
positives while still considering the false negatives. Thus, we chose F0.5 as our 
primary metric, which is a weighted average between precision and recall that 
penalizes false positives more so than false negatives.



● Logistic Regression, Baseline (Baseline LR)

● Logistic Regression, Feature Engineering (Feature Engineering LR)

● Multilayer Perceptron Classification Neural Network (MLP NN)

● Gradient Boosted Tree (GBT)

● Random Forest - Unfinished

● Linear Support Vector Machines - Unfinished

Models Created
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Training, Test Data
● Training Data: Years 2016 - 2020
● Test Data: Years 2021

Cluster Information:
Databricks Clusters

1-10 Workers 
16-160 GB Memory

4-40 Cores

Runtime11.3.x-cpu-ml-s
cala2.12

Ryan - 24 seconds

We chose to train the models on data from the years 2016 - 2020. And we tested the 
models on data from the years 2021.

We chose to pursue 6 models at first before ultimately reducing it down to four; the 
other two did not perform well enough to keep. Note that the basic baseline model 
was a logistic regression model without any of our newly engineered features.



Hyperparameter Tuning
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Logistic Regression:

● Regularization Parameter: 

0.0, 0.01, 0.5, 1.0, 2.0

● Elastic Net: 0.0, 0.5, 1.0

● Maximum Iterations: 5, 10, 

50

● Threshold: 0.5, 0.6, 0.7, 0.8

Gradient Boosted Trees:

● Maximum Iterations: 5, 10, 50

● Maximum Depth: 4, 8, 16

● Maximum Bins: 32, 64, 128

● Step Size: 0.1, 0.5

● Threshold: 0.5, 0.6, 0.7, 0.8

Multilayer Perceptron Classifier 
Neural Network:

● Maximum Iterations: 100, 200
● Block Size: 128, 256
● Step Size: 0.03, 0.1
● Threshold: 0.5, 0.6, 0.7, 0.8

● MLP NN Layer Architectures 
Used:

○ [90, 30, 15, 2]
○ [90, 15, 2]

Ryan - 7 seconds

Lastly, each model was hyperparameter tuned with a number of parameters during 
training, all of which are listed here.



Logistic Regression - Baseline

Precision
0.33

F0.5
0.20

regParam = 0.0 | elasticNetParam = 0.0 | maxIter = 5 | threshold = 0.5
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Test Evaluation
regParam = 0.0 | elasticNetParam = 0.0 | maxIter = 5 | threshold = 0.5

Deanna - 22s

We started with a baseline model, logistic regression, which was trained on data 
excluding the newly engineered features. When evaluated on our test data, the model 
performed poorly, with an F0.5 score of 0.2, and a precision of 0.3. Our goal was to 
improve upon this baseline with feature engineering and advanced machine learning. 
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Models Trained
● Logistic Regression (with engineered features) (LR FE)
● Multilayer Perceptron Neural Network (MP NN)
● Gradient Boosted Tree (GBT)
● Support Vector Machine
● Random Forest

Deanna - 12s

We trained and tuned a number of machine learning algorithms, including logistic 
regression with the engineered features added in, a multilayer perceptron neural 
network, gradient boosted trees, support vector machines, and random forest models.



Gradient Boosted Trees
maxIter = 5 | maxDepth = 4 | maxBins = 32 | stepSize = 0.5 | threshold = 0.6
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Best Model!Best Model!

Precision
86%

F0.5
166%

Improvement over Baseline

Precision
0.61

F0.5
0.52

Test Evaluation

27 features | 15 minute training runtime

Deanna - 13s

Of the models trained, Gradient Boosted Trees performed the best, with an F0.5 
score of 0.52 and a precision of 0.61, which are 166% and 86% improvements from 
the baseline model respectively! Even with this significant lift, there is still room for 
improvement since we are seeing some evidence of overfitting. 
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Most Influential Features

● Previous flight delay 
indicator

● Departure hour
● Airline carrier
● Extreme weather 

indicator

Gradient Boosted Trees
maxIter = 5 | maxDepth = 4 | maxBins = 32 | stepSize = 0.5 | threshold = 0.6

Deanna - 13s

The model trained in about 15 minutes on 27 features. The top influential features for 
this model included the previous flight delay indicator, departure hour, airline carrier, 
and extreme weather indicators, most of which were among our engineered features.



● No-Weather Feature Set VS Feature Engineered Feature Set

● Only-Weather Feature Set VS Feature Engineered Feature Set

● Ensembling Methods and Performance Comparisons

● Changing Downsampling Ratios and Performance Comparisons

Additional Experiments
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Beyond these models, we conducted additional experiments, such as removing 
weather or flight related features before training, implementing models in conjunction 
using various ensembling methods, and changing the extent of our downsampling, 
but none helped to improve upon our best model. 



Additional Info

Risks, Challenges, Limitations, and Next Steps
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Nina 2 sec

So how did we do?



Joined Row Counts

~41 million rows

Metrics Used

F0.5 VS F1

Model Selection

GBT Very Common

Gap Analysis

Engineered Features

Flight delay tracker, 
special weather indicators

Number of Features

27 VS 20-50 Features

Pipeline
Scaling, Dataset 
Balancing
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Our final model performance positions us well on the leaderboard where we had a 
similar F.5 score with other teams and above average on precision. 

In addition to helping us identify where we stand among other teams, the leader board 
is also a critical source of inspiration for us to improve our model performance against 
our baseline result. By comparing our results to top performing teams with a post join 
dataset of at least 40 million records, we got several improvement ideas. Specifically 
we were inspired to update our metrics to F0.5 so that not only can we continue to 
focus on precision but also account for the general predictive power of our model. We 
were also inspired to create a GBT model, which turned out to be our top performing 
model. 
Without going into the details, we were inspired to create 2 more engineered features 
among the total 27 features we selected for modeling. We also fine tuned our pipeline 
techniques. 



Sorting for CV
Sorting by date can be expensive.

Custom CV Implementation
Jerry-rigged solution not optimal?

Performance and Scaling Risks

Dimensionality of Features
More data leads to major slowdown. Data Streaming

Need to have the most current data!
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Data Drift
Models require constant retraining.

Deanna - 44s

Despite our satisfaction with our model, there are some performance considerations 
to keep in mind when implementing this model into production.

1. First - sorting the data for cross validation is expensive, especially when we’ve 
created our own functions that may not be efficient.

2. Next - as we increase the number of features, the model slows down 
considerably, and for categorical features, if we encounter any unseen 
categories, they get dropped

3. Also - for the model to be of any value, data would need to be streamed such 
that it is current up to 2 hours behind real time, which could be costly to 
maintain. 

4. Finally, the strengths of variable relationships shift over time, causing models 
to become outdated. Thus we would need to retrain models and track 
performance periodically.



Future Work

Additional Features

Pipeline Improvements

Additional Models

Conclusion and Next Steps
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Weighting by YearGradient 
Boosted 

Trees
F0.5: 0.52

Precision: 0.62

Ryan - 41 seconds

In conclusion, we are pleased with the significant improvement in the predictive power 
of our GBT model over the baseline model, which will allow our customers to better 
plan their travel time. 
While our F0.5 and precision scores position us well on the leaderboard, there is 
always room for improvement.

With additional time, we would have liked to add a weighting scheme so that earlier 
years or outlier years are given less importance in model training. 
There are also many more features to implement, such as destination weather, 
weather forecasting, other graph features, and binning of existing features. 
And there are always other models to test, or changes to make to the pipeline that 
could help improve our performance. 



Special Thanks!
● Professor Vinicio De Sola: Instruction and Guidance

● Mai La: Technical Assistance with GraphFrames

● Max Eagle: Assistance with Run-Times, Feature Dimensionality
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Shout outs and special thanks to the people listed here for their assistance with this 
project.
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Project Credit Assignments

Ryan 

Here is our credit assignment table



CREDITS: This presentation template was 
created by Slidesgo, including icons by Flaticon 
and infographics & images by Freepik
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Thank You!
Section 4, Group 1, Team 13

Sparks and Stripes Forever
Nashat Cabral: cabralnc96@berkeley.edu
Deanna Emery: deanna.emery@berkeley.edu
Nina Huang: ninahuang2002@berkeley.edu
Ryan S. Wong: ryanswong@berkeley.edu

Notebook Link

Ryan - 5 Second

Thank you everyone!

Notebook Link: 
https://adb-731998097721284.4.azuredatabricks.net/login.html?o=731998097721284
#notebook/632558266974488/command/1215577238246617

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
https://adb-731998097721284.4.azuredatabricks.net/?o=731998097721284#notebook/632558266974488/command/1215577238246617


Questions?
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Ryan 

Are there any questions?



Appendix

● Interesting error analysis findings：
○ Delayed flight tracker
○ DEP Hours
○ Airline Effectiveness
○ Time drift: changes in correlation

● Code snippet:
○ Feature engineering via windowing: flight tracker (is_prev_delayed)
○ Pagerank calculation
○ Cross validation

● Interesting feature observations:
○ Airline efficiency
○ Time drift: changes in correlation
○ Extreme weather indicators

30



Appendix I： Interesting Error 
Analysis Findings

31



Error Analysis - delayed flight tracker
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is_prev_delayed: This family of features is created to track whether the aircraft 
for a given flight is delayed due to a delay with the prior flight. 
We observe that when the previous flight is delayed, that is a highly predictive 
signal that the next flight will also be delayed.

We can see that there is a higher proportion of false negatives when the 
previous flight wasn’t delayed, which makes sense given our metrics priority. It 
is interesting that the proportion of true positives and false positives when the 
prior flight was not delayed is similar. This can be explained partly by our EDA 
analysis, such that the flight tracker is more predictive when the previous flight 
was delayed. When focusing solely on cases where the prior flight is delayed, 
we noticed only a small proportion of false negatives. As such, we believe that 
the is_prev_delayed variable behaves consistently between the holdout dataset 
and the training dataset.



Error Analysis - DEP Hours
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minimum delays are observed between 11PM – 5AM for both the predicted 
results (broken down into fn for false negative, fp for false positive, tn for true 
negative, and tp for true positive) and the actual results (calculated using 
DEP_DEL15). 

Between 6AM-11AM we observe moderate occurrences of flight delays, and 
we see that there are significantly more false negatives than there are false 
positives. During peak flight delay hours (2PM – 8PM), the proportion of false 
positives and false negatives are more balanced. We are not surprised by this 
result where we see a higher proportion of false negatives compared to false 
positives given our priority to maximize F0.5 and precision. 

That said, the proportion of false negatives to false positives changes during 
the day, which suggests certain hours of the days are more influential to the 
model than others and that other features might have a stronger pull on the 
model performance during less predictive hours.



Error Analysis - Airline Effectiveness
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OP_UNIQUE_CARRIER: as noted previously from our correlation analysis, we 
noticed that the percentage effectiveness of airlines (percentage of flights 
delayed) against the outcome variable changes across the year. Specifically, 
we saw that the correlation strength dropped in 2020 and 2021 as a part of 
recovery from the major industry disruptor (Covid). As such, we were not 
surprised to see that although the effectiveness of the airline still played an 
important role in the modeling, the proportion of false positives was higher 
than true positives across big airlines such as AA and DL (see figure below). 
This confirms our correlation trend analysis, suggesting that our model 
performance could improve by further analyzing airline effectiveness across 
years for airlines of different sizes.



Time Drift: Changes in Correlation
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Other interesting fun observations from correlation analysis:
1. We focused on Spearman correlation to measure the strength and 

direction of association (monotonic association)
2. Engineered features have a higher Pearson correlation than they do with 

Spearman. This suggests that while our engineered features can 
improve our logistic regression model results (assumes linearity), they 
may not be able to noticeably lift tree-based models results given the 
non-monotonic nature of the features



Appendix II： Code Snippet
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Flight Tracker: is_prev_delayed
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 Pagerank Calculation
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 Pagerank
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 Custom Blocking Time Series Cross Validation



Appendix III： Interesting Feature 
Observations

41



Airline Efficacy Score
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Total flight volume scheduled for an airline and their corresponding percentage delay



Extreme Weather Indicators

43
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Data Ingesting

Raw 
Data

Import to 
Azure, 

Convert to 
Parque

Fill in 
Missing 

Data

Normalize
, Scale 
Data

Convert, 
Encode 

Text 
Features

Join 
Data 
Sets

Feature 
Engineering
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Machine Learning Modelling

Blocking Time Series Cross Validation

Create 
Model

Split 
Data

Blocking Time Series 
Cross Validation

Split 
Data

Train 
Model on 
Split Data

Model 
Evaluation
, Selection

Hyper-
parameter 

tuning

Best 
Model 
against 

Test Data

Evaluate 
Test 

Metrics

Collect,  
Ensemble, 

Report 
Final 

Metrics

Ryan ~ 35 seconds

The first half of the pipeline focuses on ingesting and refining the data. From raw 
data, we save it to Azure in the Parquet format, making it highly available in a 
computationally efficient format. For missing data, we impute values that can be 
reasonably inferred, and drop rows where the missing data is ambiguous and 
duplicate rows. We then convert text features with StringIndexing and one hot encode 
them using sparse vectors, including those features in our analysis in a space efficient 
manner. Then, we create new features and join the data set to finish refining the data.



Blocking Time Series Cross Validation

Images From: https://hub.packtpub.com/cross-validation-strategies-for-time-series-forecasting-tutorial/

Year 1

Year 2

Year 3

Year 4

Year 5
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Since we are evaluating time series data, we need to use time series cross validation 
for accurately training and evaluating our models. We could not use the standard 
KFold cross validation because it is flawed with time series: KFolds introduces time 
gaps in the data, tests on data occurring before the training data, and it leaks data 
when the model memorizes future data it should not have seen yet. As such, we 
chose to build our own version of cross validation called BlockingTimeSeriesSplit,. 
Blocking Time Series Split will split the training data by year, builds a model for each 
year, trains that model on data from the first 70% of that year, and then tests that 
model on the data from the latter 30%. The model with the best metrics when tested is 
chosen as our best model to be evaluated against the 2021 test data. This allows us 
to cross validate our time series data without the complications of KFolds.



Logistic Regression - Feature Engineering

Precision
0.576

F0.5
0.507

regParam = 0.0 |elasticNetParam = 0.0 | maxIter = 5 | threshold = 0.6
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Test Evaluation

Precision
75%

F0.5
157%

Improvement over Baseline

Ryan

So, about that Logistic Regression model. After being trained, cross-validated, and 
evaluated against our test data, this baseline model with the default parameters has 
an astounding precision of… 2.92%. F1 and recall were… slightly better? But such 
low precision was surprising.



Multiclass Perceptron Classifier Neural Network

Precision
0.576

F0.5
0.500

maxIter = 100 | blockSize = 128 | stepSize = 0.5 | threshold = 0.5 | layers=[90,30,15,2]
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Test Evaluation

Precision
65%

F0.5
154%

Improvement over Baseline

Ryan

So, about that Logistic Regression model. After being trained, cross-validated, and 
evaluated against our test data, this baseline model with the default parameters has 
an astounding precision of… 2.92%. F1 and recall were… slightly better? But such 
low precision was surprising.



Gradient Boosted Trees

Precision
0.576

F0.5
0.524

maxIter = 100 |  blockSize = 128 | stepSize = 0.5 | threshold = 0.5
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Test Evaluation

Precision
86%

F0.5
166%

Improvement over Baseline

Ryan

So, about that Logistic Regression model. After being trained, cross-validated, and 
evaluated against our test data, this baseline model with the default parameters has 
an astounding precision of… 2.92%. F1 and recall were… slightly better? But such 
low precision was surprising.
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GBT ROC and Loss Curve



● Logistic Regression - No-Weather Feature Set
○ Logistic Regression Model trained on feature set without weather features.
○ How will model predictive power change?

Experiment: No-Weather Feature Set
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Metric Feature 
Engineered LR

No-Weather LR % Improvement 
over FE

val_f0.5 0.639 0.631 -1.25%

val_precision 0.798 0.800 0.25%

val_recall 0.356 0.342 -3.93%

test_f0.5 0.513 0.516 0.58%

test_precision 0.625 0.626 0.16%

test_recall 0.298 0.303 1.68%

● Result:
○ Minor decrease in 

training validation 
F0.5, Recall

○ Negligible increase in 
everything else



● Logistic Regression - Only-Weather Feature Set
○ Logistic Regression Model trained on feature set with only weather features.
○ How will model predictive power change?

Experiment: Only-Weather Feature Set
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● Result:
○ Minor to catastrophic 

decrease in every 
metric

Metric Feature 
Engineered LR

Only-Weat
her LR

% Improvement 
over FE

val_f0.5 0.639 0.256 -59.94%

val_precision 0.798 0.755 -5.39%

val_recall 0.356 0.070 -80.34%

test_f0.5 0.513 0.170 -66.86%

test_precision 0.625 0.483 -22.72%

test_recall 0.298 0.047 -84.23%



● Implement different ensembling methods on best LR model.
○ Ensemble Majority, Ensemble At Least One, and Ensemble Unanimous.
○ How will model predictive power change?

Experiment: Ensembling Methods
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● Result:
○ Unanimous Ensemble 

achieved slightly 
higher F0.5, precision 
over GBT.

Model test_Precision test_Recall test_F0.5 test_F1 test_Accuracy

Logistic 
Regression

0.576 0.343 0.507 0.429 0.829

Gradient 
Boosted 
Tree

0.610 0.335 0.524 0.433 0.835

Multilayer 
Perceptron

0.540 0.387 0.500 0.451 0.823

Ensemble 
Majority

0.607 0.338 0.524 0.434 0.835

Ensemble 
At Least 
One

0.510 0.405 0.485 0.452 0.815

Ensemble 
Unanimous

0.631 0.321 0.529 0.426 0.837



● Implement different downsampling ratios on best LR model.
○ Standard Ratio: 1 Delayed - 1.5 Non-Delayed. 
○ Experimental Ratio: 1 Delayed - 2 Non-Delayed
○ How will model predictive power change?

Experiment: Downsampling Ratios
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● Result:
○ Experimental 

Downsampling Ratio 
has worse F0.5, 
Precision

Model Standard 
Downsample LR

Experimental 
Downsample LR

% Improvement 
Experimental over 

Standard

test_Precision 0.576 0.504 -12.5%

test_Recall 0.343 0.3742225 9.3%

test_F0.5 0.507 0.46951016 -7.3%



Messy Data Bad Data Docs 2021 Year Glitch

Interesting Problems Experienced

DataBricks Broke 
GraphFrames

Not Enough 
Time
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Deanna - 1 min

Throughout our analysis, we’ve come across some strange and interesting errors!

As mentioned before, the raw data was messy - notably, the data documentation was 
incomplete and at times inconsistent.
We also came across issues early on in the join phase with airport codes in the 
stations dataset that didn’t quite always contain Ks at the beginning of the code. We 
also realized, having discovered that 2021 was entirely missing from our joined 
dataset, that the dates and times in the airports data changed formats in 2021.

Beyond the data, we have been facing issues with the DataBricks infrastructure that 
prevent us from using GraphFrames on more than a single node cluster. 
Unfortunately, attempting to run something like PageRank on a single node would not 
be feasible given time constraints, so we have been exploring alternative methods. 

This leads me to perhaps the largest challenge we face: it seems like we never have 
enough time to do everything we want to do!



New Tools,  PlatformsLearning Pipelines Messy Data, Bad Docs

Project Challenges

Custom Time Series CV SMOTE Nonfunctional, 
GraphFrames, Data Dimensionality
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(30 sec)
To overcome these problems, we explored with many approaches.  First, we 
overcame the tech stack barrier by quickly ramping up our knowledge on how to get 
machine learning pipelines to work on Spark dataframes.  We also resorted to 
creating user defined functions to clean messy data, perform time series CV, and 
balancing our data. To get the pagerank to work, we established a cluster that is 
compatible with GraphFrames. We also treated our one hot encoding with care by 
considering data dimensionality.



Project Limitations

Time Constraints
Not enough time to do 
everything.

MLLib Missing Functionality

Why can’t it do ____?

Data Quality Concerns
Is all the data really 
true?

Limited Compute Resources

Compute resources 
fickle, unreliable

57

Having reviewed challenges that we were able to overcome, we’d like to highlight 
some other limitations.

- First, It would be even better if we had time to try and explore more 
improvement techniques such as creating more user defined functions to 
compliment missing features from MLLib

- We also have doubts with the truthfulness of data, especially when we 
observed wind speed that are in the 3 digits

- Finally, we’d wish there was more computing resources so that we can spend 
more time on development as opposed to waiting for the model to run, or even 
worse, losing 11 hours of model results due to environment issues and having 
to rerun them



58


