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Using Machine Learning to predict 
which Data Scientists are at risk of 
changing jobs

Hello everyone! We are Team One, comprised of Max Eagle, Amy Ho, and myself, 
Ryan Wong. And we’re going to jump right into the most important lesson we learned 
from this project.



We learned that… The old ways of work are dead. Company loyalty is certain doom. 
The corporate ladder is broken. And if you want to move up, you have to get out first. 
That is the mantra of Silicon Valley tech work, a world moving so fast that staying in 
one place is falling behind. Following this mantra, individuals with highly demanded 
skills like Data Science are incentivized to change jobs constantly, thereby seeking 
greater pay, new skills, greater responsibilities, and more chances to advance their 
careers. To an eager, adaptable, mercenary-minded data scientist, this is the dream.



The 
Problem

High Employee Turnover
Operational Disruption

Financial Costs

But for the Human Resources departments interested in retaining those data 
scientists, this is a nightmare. High levels of employee turnover leads to staffing 
shortages, operational disruptions, and financial costs. As such, having a tool that 
would be able to predict what employees may be at risk of changing jobs can allow 
HR departments to be proactive and thus reduce employee turnover, operational 
disruption, and financial costs. And, in an ironic twist, data science provides such a 
tool for predicting which employees are at risk of changing jobs.



The
Data

A survey of data scientists

We were first introduced to this problem after stumbling upon our data set. As 
burgeoning data scientists ourselves, it was the name that caught our eye: “Job 
Change of Data Scientists”.



Data set from Kaggle

~21k Entries 
(19k in Train, 2k in Test)

13 Features
2 numeric, 1 boolean, 9 categorical, 1 label

“HR Analytics: 
Job Change of Data Scientists” 

It was an open data set on Kaggle that was a derived from a larger HR Analytics data 
set. Survey responses from over 21 thousand data scientists across the United States 
were compiled together with 13 features of interest. And of those respondents, a 
baseline of about 25% of them indicated that they were indeed searching for another 
job.

https://www.kaggle.com/datasets/arashnic/hr-analytics-job-change-of-data-scientists


The
EDA

Imbalanced 
Messy

Missing

We were really excited to get our feet wet with the data and start building models right 
away. But after we did our Exploratory Data Analysis,  *TRIGGER* we learned that 
this data set was a lot like my dog: imbalanced, messy, and frequently missing.



Imbalanced

Imbalanced, because nearly every one of our 13 features- including Gender, 
Education Level, and Major Discipline as shown here- had imbalanced distributions 
that we would have to contend with.



Messy Missing
Too many categories!

Too many cities!

Typos. Typos Everywhere.

Unknowns, 
Unknowns, 

Unknowns.

Messy, because we found many oddities, ambiguities and straight-up typos in the 
data. And Missing, because some features had up to 32% of entries listed as null 
values.



The 
Approach

“It is estimated that data 
scientists spend about 80% of 

their time cleaning data.” 😅

With so much cleaning necessary, we really identified with the saying that data 
scientists spend the majority of their time cleaning data. But with a little elbow grease 
and the right approach, we transformed our data in meaningful ways.



Rebalanced data with SMOTE
Equal split between label values

One Hot Encoding on our features
Dropped the majority category

Rebalance, Clean, Encode

Applied numerical changes
“> 20 years” → 25 years
“< 1 year” → 0 years

One-Hot Encoding Unknowns

We began by addressing the issues mentioned previously.

Imbalanced data was rebalanced with Synthetic Minority Oversampling Technique - 
AKA SMOTE. This works by randomly selecting an example from the minority class, 
finding the k nearest neighbors, and generating a synthetic example from these data 
points. After repeatedly doing this, we have perfectly balanced labels.

One example of applying numerical changes was a changing a categorical value of 
more than 20 years of experience into a value of 25 and adding a one-hot encoding 
that signified this as our overflow bin. We did the same for those with less than 1 year 
of experience.

Finally, we one-hot encoded all categorical features, dropped the majority category, 
and included unknowns to measure their impact.



Dropped gender,  major discipline, and company type
Skewed to one category with not a lot of variance

Principal Component Analysis (PCA)
Likely useful for decision tree and KNN

Feature Selection

As we started working on the models, we also made two additional changes for 
feature selection.

We chose to drop gender, major discipline, and company type because they were not 
very influential in terms of feature importance.

We also implemented PCA for a second set of our models in case the reduced 
dimensionality might improve performance by decreasing the number of features and 
distance between data points. We suspected that this would be useful for Decision 
Trees or K Nearest Neighbors.



What Metrics to Use?

F1 + recall
+ Higher than 
75% accuracy

Goal is to predict 
all positive cases.

False positives 
preferable to 
false negatives.

When evaluating our models, we decided that the F1 and recall scores were the most 
important ones to measure, but we did require that the models have an accuracy at 
least as good as the baseline. These metrics would allow us to maximize predictions 
for all positive cases while being cautious of accepting too many false positives.

From an business perspective, it’s okay to predict that some people will leave even if 
they don’t. But it’s not okay to predict a person won’t leave when they actually do.



What Model to Use?

So with all of those decisions made, we just had to pick a model and run it, right? 
Well, truthfully, we weren’t really sure which models would generate the best results. 
So we made a very sane, sensible decision: we were going to run every single model 
with every single combination of parameters and see what sticks. It took our three 
computers about 60 combined hours of burning silicon to actually pull off.



The 
Experiments

Models Hitting the Runway

With that plan settled, we let that spaghetti fly and looked at what stuck to the wall.



The Next Top Model
Logistic 

Regression
K Nearest 
Neighbors

Decision 
Trees

Random 
Forest XGBoost FF Neural 

Network

Linear 
Support 
Vector 

Machine

Nonlinear 
Support 
Vector 

Machine

This is a list of the eight models that we chose to run. The top six you’ll recognize 
from what we covered in the course, but the bottom two were recommended by John.



Wide Streets

In our supplemental research, we discovered that support vector machines work well 
because the decision boundaries they draw not only separate classes but also stay as 
far away from the closest training instances as possible. The idea here is to have 
large margins since this helps ensure better generalization on new data points. 



Grid Search
Model Type Hyperparameters

Decision Tree criterion, max_depth, max_features

Feed Forward Neural 
Network

hidden_layers, neurons, activation, optimizer, 
learning_rate, epochs, batch_size

K Nearest Neighbors n_neighbors, weights, algorithm, leaf_size, p

Linear Support Vector 
Machine

penalty, C

Logistic Regression penalty, solver, C, l1_ratio

Non-linear Support 
Vector Machine

C, degree, coef0

Random Forest criterion, max_depth, max_features, n_estimators

XGBoost learning_rate, max_depth, n_estimators

Each of those eight models were further tuned with hyperparameter combinations via 
Grid Search. Listed here are all of the models and the hyperparameters that we 
applied. We collected and measured the results of each model using the initial 
parameters, initial parameters with PCA, and with sets of parameters that maximize 
Area Under the Curve, F1, and recall scores.

Fun fact: because of the number of combinations possible, running all 8 models with 
the full suite of grid searches resulted in 102,836 models being created and fit. That’s 
a lot of data! Hence Vegeta’s shock and crushing his scouter.

Number of Parameters Math:
DT: 3*4*2 = 12
KNN: 9*2*4*2*2 = 288
FFNN: 4*10*2*2*3*10*8 = 38400
LR: 4*14*35*28 = 49000
RF: 3*4*2*4 = 96
Xgboost: 5*5*4 = 100
LSVM: 2*1*7 = 14
SVM: 5*4*2 = 40
TOTAL: 102836



The
Results

Judging Begins…

Running all those models took a LOT of time, mostly on Ryan and Max’s computers 
because my computer is the least chonky of all of ours. After all that machine runtime, 
we had our results.



This is one tab of our results scoring spreadsheet, which collected the scores from 
each of our models. The runs were non-deterministic, so the scores varied a little 
each time. We mostly cared about F1 and recall scores, which are the color-coded 
boxes, with green being higher scores and red being lower scores. The test accuracy 
column just flags which models returned a worse accuracy than our baseline of 75%.

You’ll note that the best test recall score was also paired with pretty poor F1 and 
accuracy scores, so we didn’t just want to pick a model with the best singular score. 
We eliminated models that didn’t beat our baseline accuracy, and then balanced F1 
and recall.



Model Evaluation
Best models :

Nonlinear SVM
Runner-up is split between Logistic Regression and Linear SVM

This led us to the nonlinear support vector machine models. After we eliminated any 
models that didn’t beat our baseline accuracy score, the nonlinear SVM models had 
both the best F1 and recall scores. They only had a slightly higher, like 1.5% higher, 
accuracy than our baseline model.
The logistic regression and linear SVM models also did well, but were just slightly 
bested by the nonlinear SVM.



Here you can see that the nonlinear SVM models, which is the group of scores that’s 
circled lowest on this page, had recall scores that hovered around 75%, compared 
with something more like 71-2% for logistic regression and linear SVM. And the F1 
scores for nonlinear SVM are also higher, but there’s not as big of a difference.



Model Evaluation
Best models :

Nonlinear SVM
Runner-up is split between Logistic Regression and Linear SVM

Notes of interest:
Decision tree recall the best but awful accuracy

Beyond just what we decided were our best models for our purposes, we also noted 
that decision trees had the best recall score, of around 80%, but had one of the worst 
accuracies.



Here you can see that the decision tree with the highest recall was also the model 
that had the lowest accuracy.



Model Evaluation
Best models :

Nonlinear SVM
Runner-up is split between Logistic Regression and Linear SVM

Notes of interest:
Decision tree recall the best but awful accuracy
Other model results non-deterministic

Never beat best models but fluctuated in ranking depending on run

Feature importance from Random Forest
{City development index, training hours, City 21, years of experience}

Our model results were also non-deterministic. We did several runs of models as we 
cleaned up code and added more details that we wanted to keep track of. Our top 
performing models tended to stay roughly the same, but the scores themselves 
definitely fluctuated and the middle and lower rankings of the models would change.

One of the things that we added that we wanted to keep track of was feature 
importance, based on our random forest models. We had different random forest 
models but they all agreed on some of the most important features, namely: the city 
development index value, the number of training hours someone has, the years of 
experience they have, and whether they live in City 21 or not. We don’t actually know 
what city 21 is but we think it might be San Francisco; people really want to leave 
their jobs in City 21.



Subgroup Recall

Gender (grouped into male + non-male)

Education level (grouped into college and above vs. high school + primary)

City (City 21 vs. all other cities)

We were also interested in learning about how well our models worked on subgroups 
as well. We were really wary of how algorithms in HR are being used more and more 
and could be exacerbating existing inequalities. For example, if our model was used 
to predict people who might leave so that we could better retain them, if the result was 
that we were better able to retain men than women, that would exacerbate the tenure 
difference between genders. We also cared about education level as a proxy for 
socioeconomic class, and from a more business standpoint, we cared about how our 
model was performing localized to particular cities, since a model that works well for 
only one city isn’t going to work well for companies in other cities.



Gender (grouped into male + non-male)
Non-male had a recall difference of +10% (ranged from 3% to 15%)

Education level (grouped into college and above vs. high school + primary)
High school + primary had a recall difference of -14% (ranged from -4% to -27%)

City (City 21 vs. all other cities)
Other cities had a recall difference of -39% (ranged from -30% to -60%)

Subgroup Recall

We found that the non-male subgroup actually had a better recall of about 10% in our 
model. Our sample size here is pretty small; we only had around 650 non-male 
samples, which made up about a third of our test group. We specifically chose to go 
with non-male instead of female because the female subgroup was even smaller, and 
there was an option for “Other” under gender and also some people didn’t fill out that 
field.



Gender (grouped into male + non-male)
Non-male had a recall difference of +10% (ranged from 3% to 15%)

Education level (grouped into college and above vs. high school + primary)
High school + primary had a recall difference of -14% (ranged from -4% to -27%)

City (City 21 vs. all other cities)
Other cities had a recall difference of -39% (ranged from -30% to -60%)

Subgroup Recall

Those without a university education had a worse recall of about 14% in our model. 
We had even fewer samples for this subgroup: only 12%, about 250 of our samples, 
had at most a primary or high school education.



Gender (grouped into male + non-male)
Non-male had a recall difference of +10% (ranged from 3% to 15%)

Education level (grouped into college and above vs. high school + primary)
High school + primary had a recall difference of -14% (ranged from -4% to -27%)

City (City 21 vs. all other cities)
Other cities had a recall difference of -39% (ranged from -30% to -60%)

Subgroup Recall

Also, if you remember city 21, the city where more than 60% of the survey 
respondents wanted to find a new job, we wondered if this city was skewing the result 
for all the other cities. Basically, were we localizing too much to city 21? And the 
answer seems to be yes; there’s a pretty big recall gap, where other cities have a 
lower recall by about 40% across our models. This is actually a pretty big deal 
because city 21 only makes up 15% of our dataset.



Our
Conclusions

And The Winner Is…

And with the judging and evaluation completed, we now come to the end.



The Top Model
Non-Linear Support Vector Machines

Everything We Learned in Class is True 🙃
Reached similar conclusions as learned in course

Kaggle Isn’t Klean
Many Kaggle submissions artificially inflated model scores through manipulation

DevOps Matters!
Need consistent dev environments, shared libraries, version control

What We’ve Learned

So we crowned our top model: Non-Linear Support Vector Machines. Separating data 
with a non-linear decision boundary resulted in the best F1 and recall scores by a 
long shot.

Along the way, we also learned a lot about machine learning.

Firstly, we reached similar conclusions as learned in course - for example, KNN 
doesn’t do well in higher dimensional spaces.

Secondly, we learned that Kaggle is like the Tour Du France: it’s full of people doping 
to win. Some of the top Kaggle submissions achieved higher scores by treating 
categorical and ordinal data as numeric and throwing out any statistical sense. We 
were horrified by this…

Lastly, consistent development environments and version controls are very important 
for workflows! Most of the work-stopping issues we ran into weren’t math, concept, or 
model related. It was figuring out how our dev environments differed and why that 
meant we couldn’t run the same set of code.



Technical:

CV folds for more generalizability

Thresholds and Confidence Intervals (CIs)
CIs >>> point estimates

Further subgroup exploration

The Next Generation
Business:

Refine data collection on gender, education, etc.

Collect additional features
Salary, vacation days, etc.

Subgroup by industry, department, and role

City-based models
Geographic effects very strong

Amy - While we learned a lot during this project, there was still a lot more we could 
have done to improve our results if we had more time. On a technical side, we talked 
about how the scores were nondeterministic, so we were interested in adding things 
like CV folds, so that we could get confidence intervals instead of a single score every 
run. We also wanted to explore more subgroups to delve further into our models and 
data.

Ryan - 
If we had an opportunity to change things at the business level, our models could 
have been so much more powerful if we had the ability to change aspects of data 
collection and collect additional data and features.

But hey, maybe the company wouldn’t let us do what we wanted. That’s okay. There is 
certainly a company out there that will let us do what we want to do. And as eager, 
adaptable, mercenary-minded data scientists, we can always change jobs and work 
for them. Because that is the dream.



CREDITS: This presentation template was 
created by Slidesgo, including icons by Flaticon, 
infographics & images by Freepik and 
illustrations by Stories

Professor Santerre
For inspiring and guiding us in this project

Hands-on Machine Learning Textbook

The Internet

Our Computers
Sorry for making you work so hard 😭

Special Thanks

Special thanks to everyone and everything on this screen. We could not have 
completed this project without you.

http://bit.ly/2Tynxth
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
https://stories.freepik.com/?utm_source=slidesgo_template&utm_medium=referral-link&utm_campaign=slidesgo_contents_of_this_template&utm_term=stories_by_freepik&utm_content=stories
https://learning.oreilly.com/library/view/hands-on-machine-learning/9781492032632/


Thank You
Team 1: 

Max Eagle, Amy Ho, Ryan Wong

MIDS, Spring 2022
W207, Santerre

Thank you all very much for your time and attention. We would be more than happy to 
answer any questions you may have.



Appendix



● # Years Experience
● # Years since last 

new job

● Gender

Demographics City Education

Employment Current Company

Featured Fields

● City
● City Development 

Index

● Education Level
● Major Discipline

● Company Size
● Company Type

The features included a wide swath of interesting characteristics about the person in 
question. These features included information about the person’s demographics, the 
city they currently reside in, their education, their employment experience, and their 
current company.



1 = Yes

Target:
“Is this person going to change jobs?

~75% of entries 
responded with Yes.

0 = No

~25% of entries 
responded with No.

And at the end of that survey was the ultimate question that was the target of our data 
set: “Is this person going to change jobs?” And as our baseline, we found that about 
75% of the respondents indicated that they were interested in changing jobs, while 
the other 25% indicated that they were not interested in changing jobs.



Data Pipeline

Raw 
Data

Model Stack

Transformed 
Data

Results
.csv

Data Prep 
Stack Logistic 

Regression

KNN

Random 
Forest

XGBoost

FF Neural 
Network

Linear
SVM

Decision 
Trees

NonLinear 
SVM

Create 
Features

Clean Data

Convert to 
CSV


